ASSIGNMENT DESCRIPTION: XNA Blackjack

In this assignment, you'll be playing a single hand of (simplified) Blackjack. You can find a description of
Blackjack on wikipedia, though we'll simplify the rules a little.

To start your work, download the ProgrammingAssignment6Materials.zip file from the Required Assessment
Materials course page and extract the contents somewhere.

The zip file contains a help file for the classes in the XnaCards namespace; you can use that help file to figure
out how to use those classes (you can also just look at the provided source code if you prefer). Double click
the XnaCards Help file to open the file. MonoGame Users: You can easily obtain free chm readers for the
Mac.

If you get an error message in the right-hand pane instead of documentation links, it means you’re currently
blocking access to the documentation. To fix this, right-click on the XnaCards Help file on the desktop, select
Properties, and select the General tab. Click the Unblock button near the lower right corner of the popup.

OK: Next, create a new XNA Windows Game called ProgrammingAssignment6; DON'T call the project
something else, it needs to be called ProgrammingAssignment6 for the next steps to work properly.

OK: Replace the template Gamel.cs file that was generated when you created the new project with the
Gamel.cs file from the code folder in the zip file.

OK: You should also copy the rest of the .cs files from the code folder in the zip file into the
ProgrammingAssignment6 project folder and add them to the project by right clicking the
ProgrammingAssignment6 project, selecting Add -> Existing Item ... (for MonoGame users, this is Add ->
Add Files ...), navigating to the files and adding them

Adding the content to your project is a little more complicated than it has been in the past because the code |
gave you for the classes in the XnaCards namespace assumes a specific folder structure in the project content.

Windows Users

OK: In Visual Studio, right click the ProgrammingAssignment6Content project and select Add -> New Folder
and create a folder named Clubs. Add folders called Diamonds, Hearts, and Spades as well.

OK: In Windows, copy all the png files from the content\Clubs folder from the zip file into your
ProgrammingAssignment6Content\Clubs folder.

OK: Copy the contents of the Diamonds, Hearts, and Spades folders as well.

OK: Also copy the png files (Back, hitbutton, quitbutton, standbutton) from the content folder from the zip
file into your ProgrammingAssignment6Content folder.

OK: In Visual Studio, right click the Clubs folder in the ProgrammingAssignment6Content project, select Add
-> Existing Item... and add all the Clubs png files to your project. Do the same for the Diamonds, Hearts, and
Spades folders and the png files that aren't in one of those folders.

OK: Copy the Arial24.spritefont file from the visual studio additional content folder from the zip file into your
ProgrammingAssignment6Content folder.

OK: Right click the ProgrammingAssignment6Content project, select Add -> Existing Item... and add the
spritefont file to your project.

Mac Users

In MonoDevelop, right click the Assets folder, select Add -> New Folder and create a folder named Clubs.
Add folders called Diamonds, Hearts, and Spades as well.

In OSX, copy all the png files from the content\Clubs folder from the zip file into your Assets\Clubs folder.
Copy the contents of the Diamonds, Hearts, and Spades folders as well. Also copy the png files (Back,
hitbutton, quitbutton, standbutton) from the content folder from the zip file into your Assets folder.



In MonoDevelop, right click the Assets\Clubs folder, select Add -> Add Files ... and add all the Clubs png
files to your project. Do the same for the Diamonds, Hearts, and Spades folders and the png files that aren't in
one of those folders.

Copy the Arial24.xnb file from the monogame additional content folder from the zip file into your Assets
folder. Right click the Assets folder, select Add -> Add Files... and add the xnb file to your project.

Make sure you set the Build Properties and Quick Properties for all these assets as described in Steps 7 and 8
of the Adding Content to a MonoGame Project instructions.

Linux Users

In MonoDevelop, right click the Contents folder, select Add -> New Folder and create a folder named Clubs.
Add folders called Diamonds, Hearts, and Spades as well.

In Linux, copy all the png files from the content\Clubs folder from the zip file into your Contents\Clubs
folder. Copy the contents of the Diamonds, Hearts, and Spades folders as well. Also copy the png files (Back,
hitbutton, quitbutton, standbutton) from the content folder from the zip file into your Contents folder.

In MonoDevelop, right click the Contents\Clubs folder, select Add -> Add Files ... and add all the Clubs png
files to your project. Do the same for the Diamonds, Hearts, and Spades folders and the png files that aren't in
one of those folders.

Copy the Arial24.xnb file from the monogame additional content folder from the zip file into your Contents
folder. Right click the Contents folder, select Add -> Add Files... and add the xnb file to your project.

Make sure you set the Build Properties and Quick Properties for all these assets as described in Steps 7 and 8
of the Adding Content to a MonoGame Project instructions.

PEER GRADING

After submitting your work (described also in the two question parts below), you'll get the chance to grade the
work of five of your peers. Your own work will also be assessed by your peers, from which we'll get your
grade. Since you've worked hard on your submission and would like your peers to do a good job of assessing
your submission, please take your time and do a good job of assessing your peer's submission in return.



REQUIREMENTS

Here’s how your game needs to work. The game should start with two hands: one for the player and one for
the dealer. You should deal two cards from a Deck into each hand (dealing like in Las VVegas, so DON'T just
give the player 2 cards then give the dealer 2 cards!). The player doesn’t have to see the deal happen. Both of
the player's cards should be face up (so the player can see what they have) and only the second dealer card
should be face up (so the player doesn't know what the dealer has for their first card). You'll have to set the X
and Y properties for the center of each card to get a reasonable display of all the cards, with the player cards
on the left and the dealer cards on the right.

You'll calculate and display the score above the player's hand. You should just call the GetBlackjackScore
method that I've provided in the Gamel class to calculate the score for the hand, but you should use the
Message class | provided to actually display the score.

Finally, you'll also display two menu buttons to the right of the player cards -- one for the player to Hit (take
another card) and one for the player to Stand (don't take another card). You should definitely use the
MenuButton class I've provided in the project for these menu buttons.

Here's a screen shot of my solution at the start of the game (you don't have to match the spacing exactly, but it
should look approximately like the screen shot):

Score: 12

7
¢

5
¢

You should carefully read the Changing Game State section below to see how the game transitions between
the possible game states.



The game continues until either both the player and the dealer bust (have a hand with a score higher than
MAX_HAND_VALUE), only the player busts, only the dealer busts, or both the player and the dealer decide
to stand in a particular "turn”. At that point, the dealer's hole card (the card that's face down) is flipped over,
the dealer's score is displayed, the Hit and Stand buttons are removed, and a Quit button is displayed. The
player clicks the Quit button to quit the game.

Here's a screen shot of my solution at the end of the game:
Score: 19 Score: 18

Player Won!

Your solution to this problem must:
e Meet the problem specification (e.g., do what it’s supposed to)
o Comply with the Course Coding Standards



CHANGING GAME STATE

Finite State Machines (FSMs) are a very helpful way to specify the behavior of software (and other systems).
An FSM consists of a set of states, and we move between the states along transitions. That's exactly how
you'll transition between the possible game states in this game. I've provided a picture of the FSM following

the description.

The game starts in the WaitingForPlayer state.

Waiting
for
Player

Player
Hitting

Player
Stands

Dealer
Hitting

Dealer
Stands

Checking
Hand
Over

Player or dealer busted
or both player and dealer
stood (didn't hit)

Displaying
Hand
Results

If the player decides to hit (by clicking the Hit menu
button), the game transitions to the PlayerHitting state. In
the PlayerHitting state, you give the player another card,
calculate and display their new score, then transition to
the WaitingForDealer state.

If the player decides to stand (by clicking the Stand menu
button) in the WaitingForPlayer state the game transitions
to the WaitingForDealer state.

In the WaitingForDealer state, if the dealer decides to hit
(they have to hit on 16 or fewer points), the game
transitions to the DealerHitting state. In the DealerHitting
state you give the dealer another card then transition to
the CheckingHandOver state. If the dealer decides to
stand (they have to stand on 17 or more points) in the
WaitingForDealer state the game transitions to the
CheckingHandOver state.

In the CheckingHandOver state, the game checks to see if
the hand is over. Hands are over when:

1. the player or the dealer has busted (gone over
MAX_HAND_VALUE in their hand)
2. both the player and the dealer decided to stand in a turn

If the hand is over, the game flips over the dealer's first
card, creates a score message for the dealer's score,
creates an appropriate winner message, hides the Hit and
Stand menu buttons, creates a Quit menu button the
player can use to exit the game, then transitions to the

DisplayingHandResults state. In the DisplayingHandResults state, if the player clicks the Quit button the

game transitions to the Exiting state.

If the hand isn't over, the game transitions to the WaitingForPlayer state.

Rule Variation: Don't worry about checking for an actual Blackjack to determine the winner. Simply use the
rule that if neither the player or the dealer has busted, the player wins if their score is highest, the dealer wins
if their score is highest, and in case of a tied score nobody wins (it's a tie).

In the EXiting state, the game exits (use this.Exit(); to exit the game).



HELPFUL HINTS

Add your functionality to the game a little bit at a time. The best way to develop a game is a small piece at a
time.

| provided all the fields you'll need for your solution at the top of the Game1 class, including lots of constants
you can use to properly place the objects in the game so they display properly.

Be sure to shuffle the deck before dealing the cards!

Managing the MenuButton and Message objects will be much easier if you maintain lists of them. By doing it
this way, you can easily add and remove menu buttons and messages as they become active or inactive.

Your Update method should use a switch statement or if/else if statements to do the appropriate game
processing based on the current game state.

The menu buttons in the game should only be updated in certain states, specifically in the WaitingForPlayer
and DisplayingHandResults states. Make sure you do this properly.

MY IMPLEMENTATION STEPS

| implemented the required functionality in the order shown below. You do NOT have to implement your
solution in this order, and | encourage you to try the assignment on your own first, but some of you might find
a little extra guidance helpful as you work on your solution. Note that all the code | added was in the Gamel
class; I didn't make any changes to any of the other files | gave you.

OK 1. Set the resolution and made the mouse visible in the Gamel constructor

OK 2. Add code to the Gamel LoadContent method to create and shuffle the deck (the x and y for
the deck don't really matter since the deck isn't displayed in the game)

OK 3. Add code to the Gamel LoadContent method to deal both cards into the playerHand and
the dealerHand. Pay attention to which cards should be flipped over and to set the x and y
for each card so they'd be displayed properly in the game

OK 4. Add code to the Gamel Draw method to draw the player and dealer hands. At this point,
you should see the two face up player cards on the left and the one face down and one face
up dealer cards on the right

OK 5. Add code to the Gamel Draw method to tell each message in the list of messages to draw
itself. At this point, you should see the player score displayed above the player cards

Add code to the Gamel LoadContent method to
OK 6. load the hit button sprite,

OK 7. create the hit button object and

OK 8. add the hit button object to the list of menu buttons.

You'll need to look at the XnaCards documentation or at the MenuButton source code to
see how to use the constructor properly. Because we want to move to the PlayerHitting
game state when the hit button is clicked, you should pass GameState.PlayerHitting as the
final argument to the constructor




OK

9.

Add code to the Gamel Draw method to tell each menu button in the list of menu buttons
to draw itself. At this point, you should see the hit button, though you won't be able to do
anything with it yet

OK

10.

Add code to the Gamel LoadContent method to load the stand button sprite, create the
stand button object and add it to the list of menu buttons. Because we want to move to the
WaitingForDealer game state when the stand button is clicked, you should pass
GameState.WaitingForDealer as the final argument to the constructor At this point, you
should see both buttons, though you won't be able to do anything with them yet

OK

11.

Add code to the Gamel Update method to tell each menu button in the list of menu buttons
to update itself if the current state is WaitingForPlayer or DisplayingHandResults; we save
the current state of the game in the currentState field. I had to get the current mouse state
before telling the menu buttons to update themselves, though, because the current mouse
state is a required argument for the MenuButton Update method. At this point, the menu
buttons should highlight and unhighlight properly, though clicking on a button will just
freeze the game with that button highlighted

OK
OK
OK
OK

OK

12.

Now it is time to start implementing the FSM, which | did with a switch statement in the
Gamel Update method. Because the transitions out of the WaitingForPlayer state are
handled through clicking on the menu buttons, we don't need to include that state.

| added a switch statement with a case for the PlayerHitting state;
the case gives the player another card,

calculates the new player score, and

transitions the game to the WaitingForDealer state.

I had to flip the new card over and set the x and y for the card so it would be displayed
properly in the game (I calculated the appropriate y location for the card based on how
many cards were in the player's hand).

To change the player's score, | needed to set the playerScoreMessage Text property;
reference the code that | provided in the Gamel LoadContent method to create that
message to see a good way to figure out the appropriate message text.

At this point, you should be able to click the hit button and watch the player get a new card
and a new score, then the game freezes with the hit button highlighted

OK

13.

Add a case for the WaitingForDealer state to the switch statement in the Gamel Update
method. In the case,

add an if statement to implement the rules described above for deciding whether the dealer
hits or stands, transitioning the game to the appropriate state in the if and else clauses of
that if statement. | got the dealer's score using the Gamel GetBlackjackScore method. At
this point, the dealer should either hit or stand based on their score, but you won't be able to
see that until after the next step

OK

14.

Add a case for the DealerHitting state to the switch statement in the Gamel Update method.
The case gives the dealer another card and transitions the game to the CheckingHandOver
state. | had to flip the new card over and set the x and y for the card so it would be
displayed properly in the game (I calculated the appropriate y location for the card based on
how many cards were in the dealer's hand). At this point, you'll see the dealer either hit or




stand based on their score when you get to that point in the game. | temporarily flipped over
the dealer's first card while | tested this part of the code to make sure the dealer's decision
was being made properly (I had to run the game a few times, of course, to check this).

OK

OK

15.

16.

Add a case for the CheckingHandOver state to the switch statement in the Gamel Update
method. In this step, | just checked if either the player or the dealer had busted (gone over
MAX_HAND_VALUE in their hand). Checking if the player and the dealer both stood is
more complicated, so | decided to come back to that part in a later step.

| added an if statement that checked if either the player or the dealer had busted, with an
else part that transitioned the game to the WaitingForPlayer state if they hadn't. If one or
both of them had busted (so we're in the if clause), | added an if/else if/else to check the
tie/dealer busted/player busted possibilities. Within the clauses of that statement, | created
the appropriate winner message text, then after that if/else if/else statement I created a new
winner message and added it to the list of messages in the game. You should definitely use
the Gamel messageFont and winnerMessageLocation fields that | provided to you for the
second and third arguments when you call the Message constructor to create the winner
message object.

Outside that nested if/else if/else statement, but still in the outer if clause (because we know
the hand is over), | added code to flip over the dealer's first card, created a score message
for the dealer's score and added it to the list of messages in the game, removed the Hit and
Stand menu buttons from the list of menu buttons in the game, created a Quit menu button
the player can use to exit the game and added it to the list of menu buttons in the game, and
transitioned the game to the DisplayingHandResults state. When creating the dealer's score
message, you should look at the way | created the player's score message in the Gamel
LoadContent method.

OK

17.

Add a case for the Exiting state to the switch statement in the Gamel Update method. Add
code to the case to exit the game. At this point, you should be able to play an entire hand of
Blackjack, though the game won't end if both the player and dealer stand, so you may have
to deliberately lose the game to see it end! It's possible that you'll draw so many cards that
they go off the bottom of the screen before you lose; that's fine for this assignment. One
way we could solve this problem would be to make sure all the cards still fit in the window
after the player or dealer hits, and if not, change the Y location of each of the cards to move
them closer together vertically. That's not necessary for this assignment, though

OK

18.

The final piece of functionality we need in our game is deciding that the hand is over if
both the player and dealer decided to stand on a particular turn. There are a number of ways
we can do this, including keeping track of the previous number of cards in both hands and
comparing those to the current number of cards in each hand in the CheckingHandOver
state or using bool flags that tell whether or not the player and dealer hit on their turn and
checking those flags in the CheckingHandOver state. | decided to use the bool flag
approach, so I included two fields in the Gamel class for these two flags. | set the playerHit
flag to true in the PlayerHitting case in the Gamel Update switch statement, | set the
dealerHit flag to true in the DealerHitting case in that switch statement, and | added a check
for both those flags being false in the outer if statement in the CheckingHandOver case in
that switch statement. I also needed to change the inner if/else if/else statement to create the
appropriate winner messages in the cases where neither the player nor the dealer busted in
the hand. Those Boolean expressions got a little complicated, but if you think it through
carefully you should be able to figure them out. Finally, I set both flags back to false before
transitioning to the WaitingForPlayer state so they'd work properly on the next turn.




FOR THE STRIVERS (OR LUNATICS) ONLY

The only source code you submit for this programming assignment is the Gamel class. In Week 9, we cover
how to design and implement your own classes. That means that, if you want to, you can design and
implement all your own classes for the cards, deck, menu buttons, and so on. Because peer reviewers will be
looking at how you interact with those classes, you should leave the method names and parameters for the
methods that the Gamel class interacts with the same as | have in the provided classes, but other than that you
have full freedom to build those other classes however you want to. If you've been itching to do some "heavier
lifting", here's your chance!

Evaluate the video for the following 7 criteria:
1. All items displayed properly with reasonable spacing and alignment
2. Menu buttons highlight properly

3. When flip cards button is clicked, cards are flipped into battle piles and correct winner message is
displayed

During previous step, flip cards button disappears and collect winnings button appears

5. When collect winnings button is clicked, collect winnings button disappears and flip cards button
appears

6. When a player runs out of cards, only the quit button is displayed
7. When a player runs out of cards, correct winner of the game message is displayed



